![]() |
AmpGen 2.1
|
These objects are combined using a vertex to form a generalised current that can be used to compute the angular momentum components of the transition matrix.
In general, these objects are only described for decays of the type \( 1\to 2 \), with more complex structures constructed from such quasi two-body decays (see Isobar model), but more general amplitudes can also be defined.
Namespaces | |
namespace | AmpGen::Vertex |
Namespace that contains the base class for vertices, Vertex::Base, as well as the implementations of specific spin couplings and some helper functions such as the orbital operators. | |
Classes | |
struct | AmpGen::Vertex::Base |
Base class for all spin vertices. More... | |
struct | AmpGen::Vertex::S_SS_S |
\( S = S_1 S_2 \) More... | |
struct | AmpGen::Vertex::S_VV_S |
\( S = g_{\mu\nu} V_1^\mu V_2^{\nu} \) More... | |
struct | AmpGen::Vertex::S_VV_S1 |
\( S = S_{\mu\nu} V_1^\mu V_2^{\nu} \) More... | |
struct | AmpGen::Vertex::S_VV_P |
\( S = \varepsilon_{\alpha\beta\mu\nu} P^{\alpha} L^{\beta} V_1^{\mu} V_2^{\nu} \) More... | |
struct | AmpGen::Vertex::S_VV_D |
\( S = L_{\mu\nu} V_1^\mu V_2^\nu \) More... | |
struct | AmpGen::Vertex::S_VS_P |
\( S = L_{\mu} V_1^{\mu} S_2 \) More... | |
struct | AmpGen::Vertex::S_TV_P |
\( S = L^{\mu} T_{\mu\nu} V^{\nu} \) More... | |
struct | AmpGen::Vertex::S_TV_D |
\( S = \varepsilon_{\mu\nu\alpha\beta} T^{\mu\gamma} L_{\gamma}^{\nu} P^{\alpha} V^{\beta} \) More... | |
struct | AmpGen::Vertex::S_TS_D |
\( S = T^{\mu\nu} L_{\mu\nu}\) More... | |
struct | AmpGen::Vertex::S_TT_S |
\( S = T_1^{\mu\nu} T_{2\mu\nu}\) More... | |
struct | AmpGen::Vertex::V_SS_P |
\( V^{\mu} = L^{\mu} S_1 S_2 \) More... | |
struct | AmpGen::Vertex::V_VS_S |
\( V^{\mu} = S^{\mu\nu} V_{1\nu} S_2 \) More... | |
Macros | |
#define | DECLARE_VERTEX(NAME) |
Macro to declare a vertex. | |
Functions | |
Tensor | AmpGen::Orbital_PWave (const Tensor &p, const Tensor &q) |
Helper function that computes the \(L=1\) orbital momentum operator. | |
Tensor | AmpGen::Orbital_DWave (const Tensor &p, const Tensor &q) |
Helper function that computes the \(L=2\) orbital momentum operator. | |
Tensor | AmpGen::Spin1Projector (const Tensor &p) |
Helper function that computes the projection operator onto a spin one state. | |
Tensor | AmpGen::Spin2Projector (const Tensor &p) |
Helper function that computes the projection operator onto a spin one state. | |
Tensor | AmpGen::Spin1hProjector (const Tensor &B) |
Helper function that projects a spinor. | |
double | AmpGen::CG (const double &j1, const double &m1, const double &j2, const double &m2, const double &J, const double &M) |
Calculates the Clebsch-Gordan coefficient for (j1 m1 j2 m2 | J M), the expansion coefficients in | |
TransformSequence | AmpGen::wickTransform (const Tensor &P, const Particle &p, const int &ve=1, DebugSymbols *db=nullptr) |
Generates a wick transform sequence that aligns tensor P (four-vector) to the +/- ve z-axis, then boosts to the rest frame. | |
#define DECLARE_VERTEX | ( | NAME | ) |
double AmpGen::CG | ( | const double & | j1, |
const double & | m1, | ||
const double & | j2, | ||
const double & | m2, | ||
const double & | J, | ||
const double & | M ) |
Helper function that computes the \(L=2\) orbital momentum operator, which is given by
\[ L_{\mu\nu} = L_{\mu}L_{\nu} - \frac{L^2}{3} S_{\mu\nu}, \]
where \( L_{\mu} \) is the Orbital_PWave operator and \( S_{\mu\nu} \) is the Spin1Projector.
Helper function that computes the \(L=1\) orbital momentum operator, which is given by
\[ L_{\mu} = q_{\mu} - p_{\mu} \frac{p_{\nu}q^{\nu}}{ p^2 }, \]
where \( p \) is total momentum and \( q \) is the momentum difference between the two particles in the state.
Helper function that projects out a spin-half state
\[ S_{ab} = \frac{1}{2m}\left( {p\!\!\!/} + m I \right) \]
Helper function that projects some lorentz object onto the momentum \(p_\mu \) of state, and is given by
\[ S_{\mu\nu} = g_{\mu\nu} - \frac{p_{\mu}p_{\nu}}{p^2}. \]
Helper function that projects some lorentz object onto the momentum \(p_\mu \) of state, and is given by
\[ S_{\mu\nu\alpha\beta} = \frac{1}{2}\left( S_{\mu\alpha} S_{\nu\beta} + S_{\mu\beta}S_{\nu\alpha} \right) - \frac{1}{3} S_{\mu\nu} S_{\alpha\beta}, \]
where \( S_{\mu\nu} \) is the spin-one projection operator (see Spin1Projector).
TransformSequence AmpGen::wickTransform | ( | const Tensor & | P, |
const Particle & | p, | ||
const int & | ve = 1, | ||
DebugSymbols * | db = nullptr ) |
The mass may be seperately specified. The parameter ve specifies whether the initial Euler rotation is to the +/- z-axis. In the case where ve =-1, a second rotation is applied about the x-axis that aligns P to the +ve z-axis. This ensures that singly and doubly primed helicity frames remain orthonormal.